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Abstract. By using a mean-field approximation (MFA) and Monte-Carlo (MC) simulations, we have stud-
ied the effect on the phase diagrams of mixed spins (σ = 1/2 and S = 1) in the Ashkin-Teller model
(ATM) on a hypercubic lattice. By varying the strength describing the four spin interaction and the single
ion potential, we have obtained by these two methods quite rich phase diagrams with several multicritical
points. This model exhibits a new partially ordered phase 〈S〉 which does not exist neither in the spin-1/2
ATM nor in the spin-1 ATM. While MFA yields phase diagrams which are sometimes qualitatively in-
correct, accurate results are obtained from MC simulations. From the critical exponents which have been
calculated using finite-size scaling ideas, we have shown that all phase transitions are Ising-like except for
the paramagnetic-Baxter critical surface on which the critical exponents vary continuously, by varying only
the strength of the coupling interaction independently of the value of the single ion potential.

PACS. 75.10.Hk Classical spin models

1 Introduction

The Ashkin-Teller model [1] (A.T.M.) is a generaliza-
tion of the Ising model to four component systems. It
may be considered as a superposition of two Ising mod-
els, which are described by variables σi and Si sitting on
each of the sites on a hypercubic lattice. Within each Ising
model, there is a two spin nearest-neighbour interaction
with strength K2. In addition, the different Ising mod-
els are coupled by a four spin interaction with strength
K4. Different methods have been applied to study the
critical behaviour of this model [2–9]. All these methods
yield three different phases: a paramagnetic (P) phase
in which neither σ nor S nor anything’s else is ordered
(〈σ〉 = 〈S〉 = 〈σS〉 = 0); a Baxter phase in which σ and
S independently order in a ferromagnetic fashion and also
〈σS〉 is unequal to zero; and a third phase called PO1

in which σS is ordered ferromagetically, 〈σS〉 6= 0, but
〈σ〉 = 〈S〉 = 0. Apart from the variational approaches
which give a tricritical point, the other accurate methods
yield only a line of critical points which connects the Ising
critical point at one end to the four state Potts critical
point at the other end, and along this line the exponents
vary continuously [2,9]. A good physical realization for
this model is the compound of Selenium adsorbed on a Ni

surface. In this context, Per Bak et al. [2] have shown by
using symmetry considerations that the order parameters
σ and S transform as two-dimensional representations of
the 4 pmm [10] symmetry group of the Ni(100) surface,
and the phase transition belongs to the universality class
of the xy model with cubic anisotropy as does the tran-
sition in the Ashkin-Teller model. The order parameter
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〈σS〉 transforms as a one-dimensional representation of
the Ni(100) symmetry group and so the melting line is of
Ising character.

One of the most interesting and challenging phenom-
ena is the appearance of other new partially ordered
phases in the ATM, such as: (i) the 〈σ〉 phase defined by
〈σ〉 6= 0 and 〈S〉 = 〈σS〉 = 0 in the three-dimensional anti-
ferromagnetic ATM [3]. (ii) The 〈σ〉 and 〈S〉 phases which
are connected by a symmetry operation to the 〈σS〉 phase
in the bidimensional anisotropic ATM [11–13]. (iii) The
PO2 phase defined by (〈σ〉 = 〈S〉 6= 0; 〈σS〉 = 0) found
recently in the spin-1 Ashkin Teller model [14,15].

The synthesis of single-chain and double-chain fer-
rimagnets is now becoming standard, and attempts to
synthesize higher-dimensional polymeric ferrimagnets are
starting to give very encouraging results. Some of the
materials investigated are 2D organometallic ferrimag-
nets [16], 2D networks of the mixed-metal material
{[P(Ph)4][MnCr(ox)3]}n where Ph is phenyl and ox is ox-
alate [17]. The intense activity related to the synthesis of
ferrimagnetic materials requires a parallel effort in the-
oretical study. Mixed Ising spin systems provide a good
model for studying ferrimagnetism [18,19].

In this paper we are mainly interested in the study
of the isotropic mixed spins (σ = 1/2, S = 1) Ashkin-
Teller model by using MFA and MC simulations. This
model might be thought of either as describing ferrimag-
nets or adsorption phenomena. The paper is organized
as follow. In the next section, the model is introduced
and the ground state diagram is presented. Section 3 is
devoted to the MFA description and the results are pre-
sented. Section 4 contains the formalism of the MC simu-
lation and finite-size scaling theory. Our numerical results
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Fig. 1. Ground state phase diagram.

for the phase diagrams and the critical exponents are pre-
sented in Section 5. Finally, in Section 6 we conclude.

2 Model and ground state diagram

The model Hamiltonian used is given by:

H = −K2

∑
〈i,j〉

(σiσj + SiSj)

−K4

∑
〈i,j〉

σiσjSiSj −D
∑
i

S2
i , (1)

where the spins Si = ±1, 0 and σi = ±1/2, are local-
ized on the sites of a hypercubic lattice. The first term
describes the bilinear interactions between the σ and S
spins at sites i and j, with the interaction parameter K2.
The second term describes the four spin interaction with
strengthK4, and on each site there is a single ion potential
D. All these interactions are restricted to the z nearest-
neighbours pairs of spins.

In order to calculate the ground state energy, we ex-
press the Hamiltonian as a sum of the contributions of the
nearest-neighbours spins. So the contribution of a pair S1,
S2 and σ1, σ2 is:

Ep = −K2(σ1σ2 + S1S2)−K4σ1σ2S1S2 −
2D
z

(S2
1 + S2

2).

(2)

By comparing the values of Ep for different configurations
we obtain the following structure of phase diagram shown
in Figure 1:
(i) For D/K2 ≥ −3z/8: if K4/K2 > −1 the Baxter1 phase
is stable since both spins σi and Si are aligned, otherwise
if K4/K2 < −1 the spins σi are antiparallel while the spins
Si are parallel then we have: 〈σ〉F = 〈S〉AF = 〈σS〉F = 0
and 〈σ〉AF 6= 0, 〈S〉F 6= 0 and 〈σS〉AF 6= 0 which char-
acterize the phase called Baxter2. The symbols 〈·〉F and

〈·〉AF indicate the thermal average of spin variables respec-
tively in the ferromagnetic and antiferromagnetic phases.
(ii) For D/K2 < −3z/8: We have two critical val-
ues of the single ion potential D, Dc1/K2 = −z(1 −
K4/2K2)/4 and Dc2/K2 = −z(1 + K4/4K2)/2, such
that if D/K2 < Dc1/K2 and D/K2 > Dc2/K2 the
Baxter2 and Baxter1 phases are stable respectively. If
Dc1/K2 < D/K2 < Dc2/K2 the spins σi are parallel
while the spins Si are equal to zero then we have 〈σ〉F 6= 0,
and 〈S〉F = 〈σS〉F = 0 we obtain the phase called “〈σ〉”.

3 Mean-field approximation

The mean-field theory represents the infinite dimensional
limit of statistical systems since it neglects correlations
between different spins. However it is interesting to study
the mean-field behaviour of the anisotropic A.T.M. so that
we may effectively bracket the three-dimensional system
between the mean- field and the d = 2 behaviour.

To write the mean-field equations let hσ, hS and hσS
denote the molecular fields associated with the order pa-
rameters 〈σ〉, 〈S〉 and 〈σS〉 respectively, and j(i) repre-
sents the set of all nearest neighbours to the site i:

hσ =
∑
j(i)

〈σj(i)〉K2;

hS =
∑
j(i)

〈Sj(i)〉K2; (3)

and hσS =
∑
j(i)

〈σj(i)Sj(i)〉K4.

The effective Hamiltonian of the system is:

H0 = −
(
hσ
∑
i

σi + hS
∑
i

Si + hσS
∑
i

σiSi

)
. (4)

It generates the following partition function:

Z0 = 2 exp(βhS + βD) cosh
1
2

(βhσ + βhσS)

+ 2 exp(−βhS + βD) cosh
1
2

(βhσ − βhσS) (5)

+ 2 cosh
1
2
βhσ

where β = 1/KBT is the inverse temperature.
The variational principle for the free energy per site is

described by:

F ≤ Φ =
−1
β

ln(Z0) + 〈H −H0〉 (6)



S. Bekhechi et al.: Phase transitions in the mixed Ashkin-Teller model 277

and the order parameters which are the spin averages are
given by:

mσ = 〈σ〉

=

(
expβ(hS +D) sinh β

2 (hS + hσS)+

expβ(−hS +D) sinh β
2 (hS − hσS) + sinh β

2hσ

)
2∆

mS = 〈S〉

=

(
expβ(hS +D) cosh β

2 (hS + hσS)−

expβ(−hS +D) cosh β
2 (hS − hσS)

)
∆

(7)

mσS = 〈σS〉

=

(
expβ(hS +D) sinh β

2 (hS + hσS)−

expβ(−hS +D) sinh β
2 (hS − hσS)

)
2∆

,

∆ = expβ(hS +D) cosh
β

2
(hS + hσS)

+ expβ(−hS +D) cosh
β

2
(hS − hσS) + cosh

β

2
hσ.

However the total free energy can be written as:

Φ = −
∑
i

lnZ0 +K2

∑
〈i,j〉
〈σi〉〈σj〉+

∑
〈i,j〉
〈Si〉〈Sj〉


+K4

∑
〈i,j〉
〈σiSi〉〈σjSj〉. (8)

Usually the solutions of equation (7) combined with
equation (3) are not unique. We choose the ones that min-
imize the free energy (Eq. (8)) and then represent the pure
phases. If the order parameters are continuous, the transi-
tion is of the second- order, while if they are discontinuous,
the transition is of first-order.

Our MF results are presented in the plane
(K4/K2, T/K2) for D/K2 = −2.0, Figure 2. In order
to describe the different entities in the phase diagrams,
we will use the Griffiths notations for the multicritical
points [12,20]. At high temperature, the ordered phases
(Baxter1 and Baxter2) are separated from the paramag-
netic phase by the partially ordered phases 〈σS〉F and
〈σS〉AF at high absolute values of K4/K2. It appears also
that lines of first order which are linked by triple points
A3, join the second order ones by tricritical point C and
multicritical point BA2 at high and low absolute values
of K4/K2. At low temperature, the ordered phase 〈σ〉
which exists at the ground state is separated from the two
other ordered (Baxter1 and Baxter2) and paramagnetic
phases by first and second order phase transitions respec-
tively. Since the MFA provides a qualitative picture of the
phase diagram, we will present detailed studies using MC
simulations.
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Fig. 2. Phase diagram for D/K2 = −2 as obtained from mean
field approximation. Solid and dashed lines denote second and
first order phase transitions respectively. C, A3 and BA2 de-
note respectively tricritical points, triple points and critical end
points.

4 Monte-Carlo simulations

The system studied is a L × L square lattice with even
values of L, containing N = L2 spins, and we use
the well-known Metropolis algorithm [21] with periodic
boundary conditions to update the lattice configurations.
Monte-Carlo (MC) simulations are performed for d = 2
with systems of sizes L = 8, 16, 24, 32 and 64. We use
95 000 to 700 000 MC steps to calculate the thermody-
namic quantities after discarding 5 000–50000 sweeps for
thermal equilibrium. Most of the phase diagrams pre-
sented here are obtained with L = 32 and are compared
with those derived from MFA.

We can evaluate the stationary phase diagram of the
model and its associated critical exponents by using the
finite-size scaling concepts [22] applied to some thermo-
dynamic properties of the system. The physical quantities
of use are the magnetizations |Mα|(α = σ, S, σS), and are
estimated by:

|Mα|=〈|Mα|〉=
1
Np

∑
c

∑
i

αi(c) with α = σ, S, σS, (9)

where i runs over the lattice sites, c runs over the config-
urations obtained to update the lattice over one sweep of
the N spins of the lattice (one Monte-Carlo step, MCS)
counted after the system reaches thermal equilibrium, and
p is the number of the MCS.

In order to measure the phase boundaries we will
find useful the measurement of fluctuations (variance of
the order-parameters) in Mα defined by the magnetic
susceptibility:

χα =
N

KBT

(
〈M2

α〉 − 〈|Mα|〉2
)

with α = σ, S, σS.

(10)
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The fourth-order cumulant Uα(α = σ, S, σS) are de-
fined by:

Uα = 1− 〈M4
α〉

3〈M2
α〉2
· (11)

Finally, we will use finite-size-scaling theory [21–23]
to analyse our results. Following this approach, in the
neighbourhood of the infinite critical point Tc, the above
quantities obey for sufficiently large L:

|Mα|L(T ) = L−β/νM0(L1/νε), (12)

χαL(T ) = Lγ/νχ0(L1/νε), (13)

UαL(T ) = U0(L1/νε), (14)

where ε = T − Tc.
If we derive equation (14) with respect to the temper-

ature T , we obtain the scaling relation:

U ′α(T ) = L1/νU ′0(L1/νε), (15)

so that U ′α(Tc) = L1/νU ′0(0). Then we can find the critical
exponent ν from the log-log plot of U ′L(Tc) versus L.

A first-order transition is signalled by hysteresis and
discontinuous jumps in the internal energy (E = 〈H〉)
and/or the order parameter (as will be shown in the
next section). The first and second order transitions may
be distinguished by the buildup of the magnetization
by quenching the system from a disordered state (cor-
responding to an equilibrium configuration at very high
temperature) to a temperature just below the transition
temperature [21,23]. Due to the presence of long-lived
metastable states, a two-step relaxation process is ex-
pected in the case of a first order transition, whereas
a smooth buildup is observed in the case of continuous
transition.

5 Results and discussion

5.1 Phase diagrams

A rich variety of phase transitions is observed by varying
the strength of the coupling parameters.

- For D/K2 = −2.0, our MC results are presented in
the plane (K4/K2, T/K2), Figure 3. At high tempera-
ture, the ordered phases (Baxter1 and Baxter2) are sep-
arated from the paramagnetic phase by the partially or-
dered phases 〈σS〉F and 〈σS〉AF at high absolute values of
K4/K2. At intermediate values of K4/K2, the MC results
present a new partially ordered phase called 〈S〉 whereas
in the MF ones this latter phase is absent (see Fig. 2).
This new phase, defined by 〈σ〉 = 〈σS〉 = 0 and 〈S〉 6= 0,
does not exist neither in the spin-1/2 [3] nor in the spin-
1 [13] AT models. The variation of the order parameters
and their susceptibilities are shown in Figure 4. The MC
results are obtained from the maxima in the susceptibility
and are qualitatively better than those of the MF ones
and all the MC transition lines are of second order linked
by multicritical points B3 and B2A, along all these lines
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Fig. 3. Phase diagram for D/K2 = −2 as obtained from MC
simulations, where diamonds and plus denote second and first
order phase transitions respectively. There is a multicritical
point B3 and a critical end point B2A.
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Fig. 4. Plot of order parameters 〈σ〉, 〈S〉 and 〈σS〉 for D/K2 =
−2.0 from MC simulations, showing the existence of two new
partially ordered phases at high temperature. The correspond-
ing inset shows associated susceptibilities. a) K4/K2 = 5, exis-
tence of the 〈σS〉 phase where at T1 = 2.13, 〈σ〉 = 〈S〉 = 0 but
〈σS〉 6= 0 whereas at T2 = 2.26 we have 〈σ〉 = 〈S〉 = 〈σS〉 = 0.
b) K4/K2 = 2, existence of the 〈S〉 phase where at T ′1 = 1.29,
〈σ〉 = 〈σS〉 = 0 but 〈S〉 6= 0 whereas at T ′2 = 1.34 we have
〈σ〉 = 〈S〉 = 〈σS〉 = 0.
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Fig. 5. Phase diagram for K4/K2 = 4.0 as obtained from MC
simulations. Diamonds and pluses denote second and first order
phase transitions respectively. In the phase diagram, there is a
critical end point BA2 and a tricritical point C denoted by a
square and located at (D/K2 = −3.65 ± 0.01, T/K2 = 1.13 ±
0.01).

we didn’t observe any hysteresis in the order parameters
when crossing the boundaries (an example is shown be-
low). Whereas in the MF phase diagram it appears also
lines of first order which are linked by triple points A3

and join the second order ones by tricritical point C and
multicritical point BA2 at high and low absolute values of
K4/K2. At low temperature, the ordered phase 〈σ〉 which
exists at the ground state is separated from the two other
ordered (Baxter1 and Baxter2) and paramagnetic phases
by first and second order critical lines respectively. As we
can see in Figure 3, the 〈S〉 phase region is small for this
value of D/K2. Then in order to enlarge this region we
have fixed the four spin interaction K4/K2 and varied the
crystal field D/K2. Also we note that only MC results are
presented, since the MF ones are qualitatively similar with
few differences in the multicritical points and the order of
magnitude in the temperature transition which is higher
as seen in the proceeding paragraph.

- For K4/K2 = 0 (we do not present the plots here) the
mixed ATM is decoupled into the two well known indepen-
dent spin-1/2 Ising model and spin-1 Blume-Capel model.
The structure of the phase diagram is obtained by super-
posing the phase diagrams of these models. At high tem-
perature and for all values of D/K2 > −2, we obtain the
〈S〉 phase which is sandwiched between the Baxter1 and
the paramagnetic phases. Its region of stability is enlarged
for higher values of D/K2. Whereas for D/K2 < −2, we
have only the 〈σ〉 and paramagnetic phases separated by
a second order transition. At low temperature the two
ordered phases 〈σ〉 and Baxter1 are separated by a first
order transition.

- By increasing the strength of the four spin interac-
tion K4/K2 > 0, the 〈S〉 region decreases and appears
only at a high crystal field D/K2, until a critical value
of K4/K2 = 4, is reached. Then the 〈S〉 phase disap-
pears and we have only a critical line with tricritical point
which separates the Baxter1 phase (〈σ〉 = 〈S〉 = 〈σS〉)
from the paramagnetic phase, Figure 5. Along the first-
order line strong hysteresis was observed. The tricritical
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Fig. 6. Plot of order parameters 〈σ〉 vs. T/K2 for K4/K2 = 4.
(a) Typical hysteresis observed when crossing the first order
transition boundary for D/K2 = −3.9, we show also the dis-
continuity indicative of a first order transition. (b) By increas-
ing the critical field, D/K2 = −3.68, the hysteresis becomes
very small and the behaviour of the order parameter is between
first and second order transitions. At D = −3.3 the hysteresis
behaviour disappears and we have also a continuity in the order
parameter which is characteristic of a second order transition.

point was determined when the hysteresis disappears, Fig-
ures 6; it occurs, for L = 32, at (D/K2 = −3.65 ± 0.01,
T/K2 = 1.13 ± 0.01). We note that the location of this
tricritical point is not performed by a finite size scaling.

When the four coupling becomes very strong,
K4/K2 > 4, Figure 7, the phase diagram exhibits the
other partially ordered phase 〈σS〉F defined by 〈σ〉 =
〈S〉 = 0 and 〈σS〉 6= 0, instead of the 〈S〉 phase. The
former phase which appears at high crystal field is the
same as the known partially ordered phase that occurs in
the usual spin-1/2 ATM, since for large D the Hamilto-
nian (Eq. (1)) is reduced to the spin-1/2 ATM for which
the 〈σS〉 phase is favoured for strong values of the four
spin interactions K4. By decreasing the strength of the
crystal field D/K2, the transition between the Baxter 1
and the paramagnetic phases becomes of first order with
a tricritical point C.

5.2 Critical behaviour

In the previous section we have described the general char-
acteristics of different varieties of phase diagrams. Since
it is important to determine the universality class of the
critical boundaries we will focus ourselves to calculate the
critical exponents.

In order to calculate the critical exponents of the
Baxter1-disorder critical line and locate better the critical
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Fig. 7. Phase diagram for K4/K2 = 5.0 as obtained from
MC simulations. Diamonds and pluses denote second and first
order phase transitions respectively. B3, C and BA2 denote
respectively multicritical point, tricritical point and critical end
point.

temperature Tc of the model for K4/K2 = 4 and D/K2 =
−2 we plot in Figures 8 the magnetization, the suscepti-
bility and the cumulant defined by equations (10–12) as
a function of temperature T , for several values of L. The
scaling relation for the fourth-order cumulant shows that,
at the critical temperature, all curves of Uα(T ) must in-
tercept themselves at Tc for whatever value of L. From
the latter figure we estimate the value of Tc as being
1.83 ± 0.01. With Tc determined we could now evaluate
the critical exponents of the model. In Figure 9, we ex-
hibit, at the critical temperature Tc, the log-log plot of
the staggered magnetization, Mα(Tc), the susceptibility
χα(T ) and the derivative of the cumulant U ′α(Tc) versus L.
From the slope of the straight line, which is the best fit
to the data points, and using equations (13, 14, 15), we
can obtain the value of the stationary critical ratios β/ν,
γ/ν and 1/ν which are associated respectively to Mα(Tc),
χα(T ) and U ′α(Tc). They are given in the table below.
We can also estimate the ratio γ/ν by a log-log plot of
the maximum value of the susceptibility versus L that
is also scaled as Lγ/ν (Fig. 9b). The value we obtain is
γ/ν = 1.745 ± 0.002. By the same way the critical tem-
perature for D/K2 = 0.5 was located at Tc = 2.34± 0.01
and the critical exponents (see Tab. 1) are given from the
finite size Scaling analysis.

At the tricritical point, with Tc determined (Tc/K2 =
1.13 ± 0.01) our best fits give νt = 0.556 ± 0.013,
Figure 10a.

Another way to find the critical exponent ν is to use
the location of the susceptibility peak as the finite lattice
critical temperature Tc(L), then Tc(L)−Tc = L−1/ν . The
results obtained (Fig. 10b), νt = 0.55± 0.013, are consis-
tent with the previous ones. All our results show that for
K4/K2 = 4, the critical line belongs to the Ising critical
and tricritical universality classes (β/ν = 1/8, γ/ν = 7/4,
ν = 1 [24,25], and νt = 5/9 [26,27]).

��� ��� ��� ��� ���

��

��

��

�

7

�F�

/ ��

/ ��

/ ��

/ ��

/ �

8
V

/
�7
�

��� ��� ��� ��� ���

���

���

���
�D�

/ �� / ��
/ ��

/ ��

/ �

0
V

/
�7
�

��� ��� ��� ��� ���

�

��

��

�� �E�

/ ��

/ ��
/ ��

/ ��

/ �

;
V

/
�7
�

Fig. 8. Plots of the temperature variation T/K2 for K4/K2 =
4.0 and D/K2 = −2, for various choices of L, of: (a) the
fourth-order cumulant. The critical temperature Tc is deter-
mined when all curves of Uα(T ) intercept themselves. We es-
timate the value of Tc as being 1.83 ± 0.01. (b) Location of
the susceptibility peak as the finite lattice critical temperature
Tc(L) = 1.85 ± 0.01 : Tc(L) → Tc when L increase. (c) The
order parameters 〈σ〉 (Similar behaviours are obtained for 〈S〉
and 〈σS〉).

For K4/K2 = 0.25, D/K2 = −2, the model
(Eq. (1)) becomes equivalent to the four state Potts
model as confirmed in Figure 11 from the estimate of
ν, ν = 0.664± 0.01, which is close to the four-state Potts
critical exponents ν = 2/3 [28]. By increasing K4/K2

the critical exponent ν varies until it reaches the value of
the critical exponent Ising model ν = 1 for K4/K2 →∞ .
We note that the critical exponent ν depends only on the
value of K4/K2. It remains independent of D/K2 which
just extends the critical exponents from points (in the case
of spin 1/2 ATM) to lines with tricritical exponents in
addition as shown in reference [15] (spin-1 ATM). We con-
clude that the critical exponents vary continuously on the
Baxter- paramagnetic critical surface in the same manner
as in the spin 1/2 ATM (Ref. [9]) independently of the
ratio D/K2.

6 Conclusion

In this paper, we have shown by using MFA and MC sim-
ulations that the mixed ATM presents as well as the par-
tially ordered phase 〈σS〉 another new partially ordered
phase 〈S〉 which does not exist neither in the spin-1/2
ATM nor in spin-1 A.T.M. The MC simulations give rich
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Table 1. The critical exponents for K4/K2 = 4.

Critical exponents: β/ν γ/ν ν

D/K2 = −2 0.124 ± 0.003 1.765 ± 0.008 0.994 ± 0.007

D/K2 = 0.5 0.126 ± 0.003 1.719 ± 0.04 0.992 ± 0.02

Exact results [24,25] 1/8 7/4 1
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Fig. 9. Finite-size dependence of critical behaviour for
K4/K2 = 4.0 and D/K2 = −2 in log-log plots: (a) U ′(σ)(Tc)
vs. L. The straight line is the best fit to the data points which
gives: ν = 1.021 ± 0.002. (b) The susceptibility χ(σ)(Tc) at
T = Tc vs. L. The straight line is the best fit to the data points
which gives: γ/ν = 1.765 ± 0.008. The susceptibility χ(σ)(TL)
at its maximum vs. L. The straight line is the best fit to the
data points which gives: γ/ν = 1.745±0.002. (c) The magneti-
zation M(σ)(Tc) vs. L. From the slope of the straight, which is
the best fit to the data points, we obtain β/ν = 0.124± 0.003.

phase diagrams with second and first order phase tran-
sitions which are more accurate and qualitatively bet-
ter than those obtained by MFA. In the parameter space
(K4/K2, D/K2, T/K2) the phase diagram presents rich
varieties of phase transitions with surfaces of first and
second order phase transitions which are bounded by
lines of tricritical, triple and multicritical points. We have
shown that all second order phase transitions are Ising-
like while at the paramagnetic-Baxter phase transition
the critical exponents vary continuously, by varying the
strength of K4/K2 between the Ising and 4-state Potts
critical exponents independently of the ratio D/K2.
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Fig. 10. At the critical point Tc for K4/K2 = 4.0 and D/K2 =
−2 a finite-size dependence in log-log plots: (a) U ′(Tc) vs. L.
The straight line is the best fit to the data points which gives:
νt = 0.556± 0.013. (b) (Tc(L)− Tc) vs. L. The straight line is
the best fit to the data points which gives: νt = 0.55 ± 0.013.
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ν = 0.664 ± 0.01.
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